Laws of Algebra of Sets
Idempotent Laws: For any set A, we have
- A ∪ A = A
- A ∩ A = A
Identity Laws: For any set A, we have
- A ∪ Φ = A
- A ∩ U = A
Commutative Laws: For any two sets A and B, we have
- A ∪ B = B ∪ A
- A ∩ B = B ∩ A
Associative Laws: For any three sets A, B and C, we have
- A ∪ (B ∪ C) = (A ∪ B) ∪ C
- A ∩ (B ∩ C) = (A ∩ B) ∩ C
Distributive Laws: If A, B and Care three sets, then
- A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
- A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
De-Morgan’s Laws: If A and B are two sets, then
- (A ∪ B)’ = A’ ∩ B’
- (A ∩ B)’ = A’ ∪ B’
Formulae to Solve Practical Problems on Union and Intersection Sets
Let A, B and C be any three finite sets, then
- n(A ∪ B) = n(A) + n (B) – n(A ∩ B)
- If (A ∩ B) = Φ, then n (A ∪ B) = n(A) + n(B)
- n(A – B) = n(A) – n(A ∩ B)
- n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C)
Thank you very much for reading carefully, if you have any other questions, you can share it with us through comments, if this information was important to you, please let us know through comments.
Please do comment and share.
Thank You.
No comments:
Post a Comment