Key Features

Experienced Teachers
Smart Classes
Regular Test
Study Material

Well qualified teachers with industrial experience.

To visualise or understand topics very easly.

We are organizing online and offline regular test.

We are providing prescribed study material.

Tuesday, September 1, 2020

Class 11 Trigonometry Formulas


Trigonometry Formulas

sin(−θ) = −sinθ
cos(−θ) = cosθ
tan(−θ) = −tanθ
cosec(−θ) = −cosecθ
sec(−θ) = secθ
cot(−θ) = −cotθ

Product to Sum Formulas

sin x sin y = 1/2 [cos(x–y) − cos(x+y)]
cos x cos y = 1/2[cos(x–y) + cos(x+y)]
sin x cos y = 1/2[sin(x+y) + sin(x−y)]
cos x sin y = 1/2[sin(x+y) – sin(x−y)]

Sum to Product Formulas

sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]
sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]
cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]
cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]

Identities

sin2 A + cos2 A = 1
1+tan2 A = sec2 A
1+cot2 A = cosec2 A

Basic Trigonometric Formulas

cos (A + B) = cos A cos B – sin A sin B
cos (A – B) = cos A cos B + sin A sin B
sin (A+B) = sin A cos B + cos A sin B
sin (A -B) = sin A cos B – cos A sin B

Based on the above addition formulas for sin and cos, we get the following below formulas:

sin(π/2-A) = cos A
cos(π/2-A) = sin A

sin(π-A) = sin A
cos(π-A) = -cos A
sin(π+A)=-sin A
cos(π+A)=-cos A

sin(2π-A) = -sin A
cos(2π-A) = cos A

If none of the angles A, B and (A ± B) is an odd multiple of π/2, then

tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]
tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]

If none of the angles A, B and (A ± B) is a multiple of π, then

cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]
cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]

Some additional formulas for sum and product of angles:

cos(A+B) cos(A–B)=cos2A–sin2B=cos2B–sin2A

sin(A+B) sin(A–B) = sin2A–sin2B=cos2B–cos2A

sinA+sinB = 2 sin (A+B)/2 cos (A-B)/2

Formulas for twice of the angles:

sin2A = 2sinA cosA = [2tan A + (1+tan2A)]

cos2A = cos2A–sin2A = 1–2sin2A = 2cos2A–1= [(1-tan2A)/(1+tan2A)]

tan 2A = (2 tan A)/(1-tan2A)

No comments:

Post a Comment