Trigonometry Formulas
sin(−θ) = −sinθ
cos(−θ) = cosθ
tan(−θ) = −tanθ
cosec(−θ) = −cosecθ
sec(−θ) = secθ
cot(−θ) = −cotθ
Product to Sum Formulas
sin x sin y = 1/2 [cos(x–y) − cos(x+y)]
cos x cos y = 1/2[cos(x–y) + cos(x+y)]
sin x cos y = 1/2[sin(x+y) + sin(x−y)]
cos x sin y = 1/2[sin(x+y) – sin(x−y)]
Sum to Product Formulas
sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]
sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]
cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]
cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]
Identities
sin2 A + cos2 A = 1
1+tan2 A = sec2 A
1+cot2 A = cosec2 A
Basic Trigonometric Formulas
cos (A + B) = cos A cos B – sin A sin B
cos (A – B) = cos A cos B + sin A sin B
sin (A+B) = sin A cos B + cos A sin B
sin (A -B) = sin A cos B – cos A sin B
Based on the above addition formulas for sin and cos, we get the following below formulas:
sin(π/2-A) = cos A
cos(π/2-A) = sin A
sin(π-A) = sin A
cos(π-A) = -cos A
sin(π+A)=-sin A
cos(π+A)=-cos A
sin(2π-A) = -sin A
cos(2π-A) = cos A
If none of the angles A, B and (A ± B) is an odd multiple of π/2, then
tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]
tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]
If none of the angles A, B and (A ± B) is a multiple of π, then
cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]
cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]
Some additional formulas for sum and product of angles:
cos(A+B) cos(A–B)=cos2A–sin2B=cos2B–sin2A
sin(A+B) sin(A–B) = sin2A–sin2B=cos2B–cos2A
sinA+sinB = 2 sin (A+B)/2 cos (A-B)/2
Formulas for twice of the angles:
sin2A = 2sinA cosA = [2tan A + (1+tan2A)]
cos2A = cos2A–sin2A = 1–2sin2A = 2cos2A–1= [(1-tan2A)/(1+tan2A)]
tan 2A = (2 tan A)/(1-tan2A)
No comments:
Post a Comment